Photocatalytic degradation of methylene blue by 2 wt.% Fe doped TiO2 nanopowder under visible light irradiation
Authors
Abstract:
In this paper, 2wt.% Fe doped TiO2 nanopowder was prepared by a combination of sol-gel and mechanical alloying methods. The mechanical alloying of Fe powder with Ti(OH)4 gel produced from the sol-gel method was used to produce Fe doped TiO2 nanopowder. The synthesized samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and diffuse reflectance spectroscopy (DRS). The photocatalytic behavior of nanopowder was examined by the degradation of methylene blue (MB) under visible light irradiation. XRD result showed that the phase structure was a combination of anatase and rutile phases and the anatase percentage was considerably increased to 72.3 % by Fe doping. The FESEM results demonstrated that the average particle size of TiO2 was decreased to 45 nm by Fe doping through ball milling. DRS results indicated the band gap of photocatalyst has shifted from 2.95 to 2.60 eV by Fe doping through ball milling. Photodegradation of MB was evaluated and the degradation rate was reached to 47% after 240 min under visible light irradiation. The photocatalytic performance of TiO2 nanoparticles improved by doping Fe through mechanical milling. Degradation reaction conformed by the first-order reaction kinetic model. The recycled Fe doped TiO2 nano-photocatalyst showed only a slight decrease of 7% in degradation rate after the third cycle.
similar resources
Photocatalytic Degradation of Methylene Blue by Innovative BiVO4/TiO2 Composite Films under Visible Light Irradiation
Bismuth vanadate and titanium dioxide (BiVO4/TiO2) composites, used as visible-light-driven photocatalysts were successfully synthesized with different mole ratios by coupling of a co-precipitation method with a sol-gel method. The phase transitions of the as-prepared BiVO4/TiO2 composites were carried out by X-ray diffraction (XRD). The results clearly indicated that the as-synthesized BiVO4/T...
full textVisible light photocatalytic activity of MWCNT/TiO2 using the degradation of methylene blue
Multi-walled carbon nanotubes (MWCNT)-doped TiO2 thin films were synthesized by the dip-coating method. The obtained products were characterized by SEM, EDX, XRD, and UV-vis absorption spectroscopy. The XRD patterns showed the presence of anatase phase. Absorption spectrum of MWCNT-doped TiO2 revealed a red shift in the optical absorption edge due to carbon doping. The photocatalytic properties...
full textPhotocatalytic Degradation of Methyl Orange by CeO2 and Fe–doped CeO2 Films under Visible Light Irradiation
Undoped CeO2 and 0.50-5.00 mol% Fe-doped CeO2 nanoparticles were prepared by a homogeneous precipitation combined with homogeneous/impreganation method, and applied as photocatalyst films prepared by a doctor blade technique. The superior photocatalytic performances of the Fe-doped CeO2 films, compared with undoped CeO2 films, was ascribed mainly to a decrease in band gap energy and an increase...
full textPhotocatalytic Degradation of Methylene Blue under UV Light Irradiation on Prepared Carbonaceous TiO2
This study involves the investigation of altering the photocatalytic activity of TiO2 using composite materials. Three different forms of modified TiO2, namely, TiO2/activated carbon (AC), TiO2/carbon (C), and TiO2/PANi, were compared. The TiO2/carbon composite was obtained by pyrolysis of TiO2/PANi prepared by in situ polymerization method, while the TiO2/activated carbon (TiO2/AC) was obtaine...
full textNitrogen doped TiO2 for efficient visible light photocatalytic dye degradation
In this study, Nitrogen doped TiO2 photocatalysts were prepared by the sol gel method and physicochemical properties were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM), photoluminescence, and energy dispersive X-ray spectroscopy (DRS) techniques. The XRD data indicated that the nanoparticles had the same crystals structures as the pure TiO2</su...
full textPhotocatalytic degradation of methyl orange using TiO2:Mg2+/zeolite composite under visible light irradiation
Photodegradation of methyl orange was investigated using synthesized TiO2:Mg2+/zeolite as the photocatalyst. The photocatalyst was characterized by X-ray, XRF, FT-IR, and SEM. The photocatalytic activities of TiO2:Mg2+/zeolite samples were evaluated in the degradation of methyl orange under visible light irradiation. The appropriate content of Mg in the composite was obtained as 4.711 wt% with ...
full textMy Resources
Journal title
volume 52 issue 2
pages 133- 141
publication date 2019-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023